Complete and Infinite Traces:

A descriptive model of computing agents

Kevin S. Van Horn

Computer Science Department
California Institute of Technology

5207:TR:86

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1986 2. REPORT TYPE 00-00-1986 to 00-00-1986
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Complete and Infinite Traces: A descriptive mode of computing agents £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 15
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Complete and Infinite Traces:

A descriptive model of computing agents

KeVin 'S. Van Horn

Computer Science Department
California Institute of Technology

 5207:TR:86
The research described in this paper was sponsored by
the Defense Advanced Research Projects Agency, ARPA Order No. 3771,
and monitored by the Office of Naval Research

under contract number N00014-79-C-0597

© California Institute of Technology, 1986

COMPLETE AND INFINITE TRACES:
A descriptive model of computing agents

Kevin S. Van Horn
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125

Abstract: A model of computing agents is presented. Computing agents are modeled
as processes, which are essentially sets of traces representing possible complete sequences
of actions performed by an agent and its environment. Some technical difficulties with
infinite traces are resolved, with the result that one may take the parallel composition of
any countable set of processes, after possibly renaming some symbols.

0. Introduction

One indication of how well we understand some phenomenon is our ability to provide
an adequate mathematical model of it. Such a model provides a firm basis for reasoning
about the phenomenon; in its absence we are vulnerable to the treacheries of informal
reasoning, and we are severely limited in our ability to analyze complex instances of the
phenomenon. Computer science, as distinguished from the natural sciences, is the study of
phenomena of our own invention; alas, invention does not necessarily entail comprehension.
Adequate mathematical models are just as indispensable for computer science as for other
disciplines. In this paper we propose a general model, CIT (Complete and Infinite Traces),
of a “phenomenon” of great importance in computer science: computing agents.

The motivation for developing as general a model as possible is a desire for conceptual
economy. For example, many different approaches to concurrent programming have been
investigated, and many proposals have been put forth for the semantics of various concur-
rent languages; wouldn’t it be nice if all of these could be described and reasoned about
within the same underlying mathematical framework? This would facilitate the introduc-
tion of useful new programming constructs to a language without wreaking havoc with the
semantics. As an example, there have been a number of proposals for the denotational
semantics of CSP [7][1]2][3], and it is not obvious how they should be extended to include
Alain Martin’s probe function [4]. In addition, the ability to describe hardware systems

1

within this same framework would help to further erode the dichotomy between hardware

and software and aid us in applying the same reasoning and design methods to both kinds
of systems.

What is a computing agent? In one view, a computing agent is something that takes an
input and produces as output some function of it. This is the view taken in the traditional
denotational semantics of sequential programming languages. An imperative program is
considered to denote a function from an initial to a final state, and a functional program
is considered to denote a function on some domain. Such a view is clearly inadequate for
describing hardware devices other than purely combinational logic, and is too simplistic
even for describing most programs—except in scientific computing, few useful programs
are of the “give me an input and I’ll give you an output” variety.

The view we take in this paper is this: computing agents are objects which may
perform various actions, thus exhibiting some discrete behavior, and this behavior may be
influenced by the actions of other agents. In the case of a digital circuit the relevant actions
are voltage transitions. A computer program may perform such actions as assigning a value
to a variable, initiating a CSP-style communication action, or writing a character to the
user’s screen, and may respond to actions such as the user hitting a key on the keyboard.

This is a different view of actions (sometimes referred to as events) than is taken in
models such as Milner’s CCS [5] or Hoare, Brookes, and Roscoe’s failures model of CSP [2],
in which actions require the participation of more than one agent. Here we consider every
action to be performed by some single agent. A CSP communications action is viewed as
two actions, one performed by the sender and the other by the receiver.

An action performed by the computing agent itself is an output action, while an action
performed by some exterior agent is an input action. An output action is not necessarily
“seen” by any external agent; it may be an internal action. There is an essential asymmetry
between input actions and output actions: the computing agent can control which output
actions take place, but has no control over input actions. This asymmetry is the reason
for using the term “computing agent” instead of “computing system.” We wish to describe
the behavior of some object which will be made to interact with other objects, without
knowing a priort anything about the behavior of those other objects.

1. Traces

We shall use traces to represent sequences of actions. It is assumed that the reader
has had some exposure to formal language theory; below we present the definitions and
notations which will be used in this paper.

A trace is a sequence of symbols taken from some alphabet, which is just a set of
symbols. The empty trace is denoted by ¢, and the trace of unit length formed from the
symbol z is denoted z-. The set of all finite traces formed from alphabet A is written A*,
the set of all infinite traces formed from A is written A¥, and A% is just A* U AY,

The catenation of two traces ¢ and u is written as the juxtaposition of the two, i.e. tu.

2

If ¢ is an infinite trace then tu is undefined.

The length of a trace ¢ is written as £(t); if ¢ is infinite, then £(t) = w. We write ®(¢)
for “t is finite.” We shall often omit the phrase ®(¢) when it is obvious from context.

A prefiz of a trace is any finite initial subsequence of it. We write ¢t < ' to mean “ is
a prefix of ¢'”, i.e. ®(t) A (Ju ::t' = tu). Note that < is a partial order on traces (except
that t <t doesn’t hold if ¢ is infinite).

The set of prefixes of a trace ¢ is pref t = {¢' | t' < t}. Note that pref t contains only
finite traces. For a set of traces T we similarly define pref T = U(t : t € T : pref t). We
say that T is prefiz-closed if pref T C T.

A chain of traces is a set of finite traces S s.t. t <t' or ¢! <t for all t,t' € S. Every
chain of traces S has a least upper bound, which we shall denote £(S); if S is finite then
L(S) is just the maximum element of S, otherwise it is the unique infinite trace ¢ s.t.
pref t = pref S. Note that preft is a chain for all traces ¢, and that ¢ = L(preft).

Given a trace ¢ and trace set T', we define next(t,T) to be {a | ta- € pref T'}.

We write t#A for the number of occurrences of symbols from A in ¢, and t#a for
t#{a} if a is a symbol.

2. Sequential Processes

The mathematical structure which we will use to model a computing agent is called
a process. A process is essentially a set of traces plus an input and an output alphabet.
Each symbol in the output alphabet represents some action which the agent may perform,
and each symbol in the input alphabet represents some external action which may affect
the agent. We consider all actions to be instantaneous, having no duration in time; if an
“action” actually does have some nonzero duration, we will model it by two actions, one
which indicates initiation and another which indicates termination.

We assume that there is some “starting point”, some point in time before which neither
the computing agent nor the agents interacting with it perform any action. We can then
imagine an observer who is present from the starting point until the end of eternity, and
who records the sequence of actions (both input and output) which are performed. This
sequence we call a complete history. If we imagine that our observer gets bored after a
finite amount of time and wanders off, the sequence he records we call a partial history,
and will be a prefix of some complete history. Every complete history which might be
recorded by our imaginary observer must be in the trace set of the process describing the
computing agent in question.

By using traces this way we implicitly assume that no two distinct actions may occur
at ezactly the same time; one always precedes the other, even if the time separating them
is too small to be measured. This is justifiable since, for the systems we will consider, only
a finite number of actions may occur within a finite interval of time, and this finite interval
contains an uncountably infinite number of points.

3

The process modeling a computing agent must include in its trace set any sequence of
actions which we cannot guarantee will not occur, given our knowledge of the computing
agent. Thus it could happen that, upon further investigation, we will find that some
element of the trace set is not a possible complete history at all. For example, the trace
set may indicate that two concurrent actions ¢ and b may occur in either order, whereas
the actual operation of the agent may be such that a will always occur before b. If the
trace set contains elements which are not in reality possible complete histories, our model
may be tnadequate, but as long as the trace set contains every possible complete history,
we will consider the process to be a correct model of the computing agent.

It is evident that not all sets of traces are valid representations of the behavior of some
computing agent. For example, suppose that t is some possible partial history; furthermore,
suppose that when the sequence of actions t has occurred the next action that occurs must
be an input action, i.e. for all @ s.t. ta- is a partial history, a is an input action. Then
t is a possible complete history, since the required input action may never occur, and so
t must be in the trace set. In addition, as is often the case, strange things happen at
infinity. There are mathematical difficulties with parallel composition when infinite traces
are allowed. There are also conceptual difficulties—if an infinite sequence of actions can
never be observed in its entirety, what does an infinite trace mean? Obviously, an infinite
trace must represent some sort of limit of finite behavior. The question then becomes,
when should the lL.u.b. of an infinite chain of partial histories be included in the trace set,
and when should it not?

In order to simplify the task of characterizing the valid sets of traces, we assume that
any process is either a sequential process or may be formed from the parallel composition
of a number of sequential processes, where a sequential process is one which may model
an agent that performs its output actions one at a time. Note that the input actions of
such an agent may occur concurrently with each other and with the output actions.

In this section we will examine sequential processes. For the rest of this section, I and
O will be resp. the input and output alphabets of the sequential process in question, and
we will write A for TU O.

If T is the trace set of a process, and ¢ is a partial history, then next(t,T) (see section
1) is the set of all possible next actions after the sequence ¢t has occurred. Since the agent
has no control over its input actions, any input action may occur at any time. Hence we
give the following requirement on the trace set T of a sequential process:

R1: I C next(t,T) for all t € pref T

A sequential computing agent is excited or enabled at some point in time if it is about
to perform an output action, and we can guarantee that if no input action interferes, some
output action will occur. If ¢ is the sequence of actions which have occurred up to this
point in time, we say that the agent is enabled at ¢. For example, an inverter with a 0
value at both input and output is enabled: it is about to perform a transition from 0 to 1

4

on the output, and is guaranteed to do so unless there is a transition from O to 1 on the
input line first. Note that ¢ cannot be a complete history if the agent is enabled at £.

The operation of a sequential agent may be viewed as follows. At any point in time,
either the agent is not enabled and it may be that no more actions will ever be performed,
or the agent is enabled and will eventually either be disenabled by some input action or
nondeterministically choose one of its possible next output actions and perform it. Note
that this is not in general an appropriate view of the operation of an agent which comprises
several concurrently operating components. With these ideas in mind we can now say what
the infinite complete histories should be for a sequential agent. Given any prefix-closed
chain S of partial histories, £(S) is a complete history provided that whenever s € S and
the agent is enabled at s, there is some su € S s.t. either the agent is not enabled at su
or u#0 > 0. Note that if S is finite then this says that £(S) is a complete history iff the
agent is not enabled at £(S5).

We now formalize these ideas as a requirement for sequential processes.

Definition: Given T C A® and ¢ € pref T,
eno(t,T) <= t ¢ T A next(t,T)NO # 0

When there is no ambiguity we will simply write en(t, T). If T is the trace set of a sequential
process then en(t,T) is true if the agent modeled is enabled at ¢.

Definition: We say that S is a proper chain of T C A*, denoted S chainofo T, iff S is a
prefix-closed chain and S C pref T and

Vs:s€ SAen(s,T):(Ju:sue S:-en(su,T)VuftO > 0)

When there is no ambiguity we will simply write S chainof T. A proper chain is intended
to be the prefix set of a possible complete history.

Definition: Given T' C A®, the completion of T is

T°? = { L(S) | S chainof T }

It is easily shown that pref T' = pref T and (T°?)? =T and TN A* C T°? N A*. If
T = T°? we say that T is complete. Note that there may be some infinite traces of T which
are not in T°?. We then require that the trace set of a sequential process be complete:

R2: T=T*

As we will see in the next section, requirements R1 and R2 on sequential processes relieve
the difficulties with parallel composition when infinite traces are allowed.

5

Note. This completeness requirement is analogous to Soundararajan’s completeness
[3] and Back’s closedness [8] requirements, with the difference that, due to the input-output
dichotomy, we do not take the limit of every chain of partial histories.

We may wish to say that the future behavior of an agent after a certain sequence of
actions ¢ has occurred is utterly unknown. There may be several reasons for this. It may be
that the occurrence of an input action at the wrong time may cause something disastrous
to happen, such as a flip-flop going metastable (in which case the behavior may no longer
be considered discrete), or a dazzling display of pyrotechnics if we have a circuit designed
by a member of the Screenwriter’s Guild. It may be that we are truly ignorant of what
the future behavior might be after the sequence ¢ has occurred. Or it may be that we do
not wish to consider what the future behavior might be. In addition, having an explicit
notion of “utterly unknown” or “undefined” is useful in applying this theory to recursive
programming language semantics (a topic to be covered in a future paper.) If the future
behavior of a sequential agent is unknown after ¢ has occurred, we say that the agent (resp.
the process modeling it) is broken at t.

So in addition to T, which gives the possible complete histories for our computing
agent, we have a set U C T giving the traces at which the agent is broken. We call U the
breakage set. We place some restrictions on what U can be. First of all, if the agent is
broken at ¢ then after ¢ anything may happen, thus tu € T for all u € A®, and since the
agent stays broken once it breaks, tu € U also. Secondly, since the agent may be broken

at ¢ only if ¢ is finite, the only infinite traces in U should be those required by the previous
rule.

Definition: Given U C A%, the convex closure of U is
U¥={tuc A |te UA®)}

Note that (U)* = U®. If U = U® we say that U is convez. Note that U = U® is
equivalent to

(Mu:teUNBB)AuE A i tu c UYA(VE:t €U Tt : ¢ <t:t' €)

We then require that U, the set of traces at which the process is broken, be convex:

R3: U=U%

Note. This convexity requirement is similar to Soundararajan’s convexity [3] and
Back’s flatness [8] requirements.

Note that requirement R1 made the introduction of breakage sets into our model
necessary. In other models, such as trace theory [9][10], no breakage set is required because
processes are not required to satisfy R1. In these models R1 is not used either because

6

there is no distinction between input and output actions or because the trace set is regarded
as a specification of the allowed behavior of both the agent and its environment. In the
latter case there are consistency or “composability” requirements which must be satisfied
to allow the parallel composition of two processes. This is undesirable for a descriptive
model; we would like to be able to do the parallel composition of any set of processes
with disjoint output alphabets. As we shall see, requirements R1 and R2 on sequential
processes are sufficient to allow this.

With these conditions we can now give the formal definition of a sequential process.

Definition: A sequential process is a tuple S = (I,0,T,U) such that
a. I and O # @ are disjoint alphabets called the input and output alphabets of S

respectively.
b. UCTC(IUO)® and T # 0.
c. R1 holds: I C next(t,T) for all t € pref T.
d. R2 holds: T = T°*.
e. R3 holds: U = U*

For such an S we define

aS=IuoO is=1I oS =0
tS=T uS ="U PS = pref T

Example 2.1: A C-element is a digital circuit with two inputs and one output. A
“transition” refers to a change from high to low or from low to high voltage on a wire. A C-
element waits for transitions to occur at both of its inputs, and then performs a transition
at its output. If two input transitions occur without an output transition separating them,
we can’t say just what will happen. Letting a and b represent transitions on the inputs
and ¢ a transition on the output, we model a C-element as the sequential process

({a,b},{c},TUU,U) where

T = S*{a-,b,e} USY

S = {a-b-c:,b-a-c'}

U={tz |z € {a,b} At € pref T Atz > t#ec}*

(S* is the set of traces formed by catenating together any finite sequence of elements from
S, and S is the set of traces formed by catenating any infinite sequence of elements from
S. For two sets of traces R; and Ry, RyRy is {tu |t € RyAu € R, }.)

Example 2.2: Let S model a set-reset flip-flop, where both the inputs and the output
are initially low. When the flip-flop is set, the the set signal must not be removed until
the output is high, and when it is reset, the reset signal must not be removed until the
output is low, otherwise the flip-flop may go metastable. In addition, the set and reset

7

signals should never be simultaneously high. Let r, s, and q represent transitions on the
reset line, set line, and output respectively. Defining A = {r,s, ¢}, we can define S as

({s,r},{q}, TUU,U) where

T={t€A® |VYv:v<t:(h(r,v) Ah(q,v)V h(s,v) Al(g,v)) & vg- <t}
U = (U,ul,)*”

Uy = {tr- |t € pref T A (h(r,t) A h(g,t) vV I(r,t) A h(s,t)) }

Uz = {ts- |t € pref T A (h(s,t) Al(q,t) VI(s,t) A h(r,t))}

h(z,t) <= odd(t#z)

I(z,t) <> —h(z,1)

Example 2.3: Suppose we have a coroutine which, in a neverending cycle, waits to
be passed an integer z, then passes back z * n where n is the number of times it has been
called. We model this as the sequential process

(I,0, TUU,U) where

I={(¢,z) | z is an integer }

O = {(o,z) | z is an integer }

A=TU0O

T={t€A® |Vv,z:v <t:v#O0 < v#IA(v(i,z)- <t = v({i,z)-(0,z * (v#1))- <t)}
U= {ty- |ye€INte pref T ANt#I > t#0}*

3. Parallel Composition and General Processes

We now turn our attention to parallel composition. We define parallel composition
in a manner analogous to that used in trace theory, using the projection operator. The
projection of a trace ¢ onto an alphabet A, written ¢[A, is just ¢ with all symbols not in A
removed. For finite traces we define it as follows:

e[A=¢
(au)[A=a-(u[4) fac A
(au)[A=u[Aifag A
If T is a set of traces then T[A = {¢[A |t € T }. Noting that

(pref(t[A) = pref(t)[A) and (¢t <t' =>t[A <t'[A)

for all finite traces ¢ and t', we see that t[A = L(pref(t)[A) for all finite ¢. So for infinite

traces t we define
t[A= L(pref(t) [4)

8

The parallel composition of a set of processes models the computing agent that is the
aggregate of the computing agents modeled by the elements of the set. It is meaningful to
form the parallel composition of a set of processes as long as the set is composable, which
for a set of sequential processes K means that K is countable and

(V5,8':5,8'c K:08NoS' =V S =5

This just says that we have been consistent in assigning symbols to represent actions,
and have not used one symbol to represent two kinds of actions performed by distinct
computing agents. Note that K may be an infinite set. The reason for this is that in
some concurrent languages processes may be created “on the fly.” We can model this by
assuming that all processes which might be created already exist, but are quiescent until
“awakened” by the parent process. Since we may not wish to put an upper bound on the
number of such processes, it is convenient to pretend we have an infinite number of them,
of which all but a finite number are quiescent at any moment, just as we often pretend
that a memory allocator has infinite memory resources to draw upon.

A moment’s reflection will reveal that a sequence of actions is a possible complete
history for the aggregate of a collection of computing agents if and only if for any of
the agents, upon projecting the sequence onto the set of actions which may be seen or
performed by that agent we get a possible complete history for that agent. Hence we
define the parallel composition of a set of sequential processes as follows.

Definition: Given a composable set K of sequential processes, the parallel composition
of K is
(| &) =(1,0,T,U) where
O=J(S:S€K:08)
I=|J(S:S€K:i8)-0
T={te(IuoO)™ |VS:S € K :t[laS €tS}
U={teT|38:S€K:tlaScuS}

Using the terminology of trace theory, we will often call the parallel composition of a
set of processes the weave of the processes. We then define a process to be anything that
is the weave of a composable set of sequential processes.

Definition: A process is a member of the class
P={||K|KC S and K is composable }

where § is the class of sequential processes. If P is a process, then aP, tP, etc. are defined
Jjust as for a sequential process. Note that only sequential processes are required to satisfy
R2 and R3, and processes in general may not satisfy R2 or R3.

9

For any sequential process S, {S} is composable and ||[{S} = S, and so § C P. We
define composability and the weave for general subsets of P just the same as for subsets
of §. The question then arises as to whether the weave of a composable set of processes is
always a process. The answer is affirmative. We prove this beginning with the following
lemma.

Lemma 3.1: Let J be a countable set of countable subsets of P such that
VK,K',P,P': K,K'€c JAPEKAP €K :0PNoP' =0VK=K AP =P
Then each K € J, as well as UJ and {||K | K € J }, is composable, and

KK | KeTy=| U7

Proof: Simple application of the definitions. O

Note that if we define the binary weave operator by P||Q def {P, @} then binary weave

is commutative, and as a consequence of Lemma 3.1 it is also associative.

Theorem 3.2: If C is a composable subset of P then ||C € P.

Proof: For each P € C there is some composable set Kp C § such that P = |Kp. Let

J ={Kp | P e C}. Itis easily seen that J satisfies the requirements of the previous
theorem, hence '

|Us=Ix KT} =|{lKs | PeC}=]C

Then since U B C § we have that |C € P. O

One of the problems in developing a trace-based theory of computing agents, which we
alluded to earlier, is ensuring that the weave always produces meaningful results. Suppose
we have a composable set K C § and a trace ¢t € (Ugex aS)* such that t[aS € pS for all
S € K. Since t[aS is a possible partial history of the agent modeled by S for all S € K ,
we should expect ¢ to be a possible partial history of the aggregate of the agents modeled
by processes in K, i.e. we expect that ¢t € p(||K). If we place no restriction on the trace
sets of the elements of K, this will not in general be true. If our trace sets contain only
finite elements, it is not hard to find obvious conditions on the trace sets to make this hold
true. The importance of condition R2 (combined with R1) for sequential processes is that
it makes this hold true even if there are infinite traces in the trace set.

Theorem 3.3: For all composable sets K C §,

p(|K)={te (| as)*|VS:S e K:t[aScpS}

10

Proof: Let T be the right-hand side of the above equality. It is obvious that a(]|K) =
Usex @S, and that p(||K) C T. It remains to show that every element of 7' is an element

of p(||K). Given some ¢t € T, we show that ¢ € p(||K) by constructing a #' € t(]|K) such
that ¢ < ¢, as follows:

First, for all natural numbers 7 we define the sequence o; = 0-1---- t-, and we define
the sequence 7 = 090103 - - -. The jth element of is denoted 7| J]. The sequence 7 has the
important property that for all j and n there is some k > j such that 7[k] = n.

Enumerating the elements of K as Sy, S, ..., we define a chain of traces {t;}; by
a. to =1t
. . . . def
b. Given ¢;, let ¢ = 7[j]. If ¢ > |K| or N = next(t;[aS;,t5;) NoS; = @ then t;; = ¢;.

Otherwise t;,1 = t;a- where a is some element of N.

In other words, for each 7, if § & (5] < |K| we look at S; and extend ¢; by some action
from oS; if possible to produce t;;;. R1 ensures that t;11[aS, € pS; for all k, since oS;
and oS; are disjoint for all § # ¢. We then see that pref{t;[aS;}; C pS; for all ¢. For all
s € pref{t;[aS;}; there is some u s.t.

(su € pref{t;[aS;};) A (next(su,tS;) N 0S; = B V u#0S; > 0),

(due to the form of 7) and hence pref{t;[aS;}, chainof tS;. Thus t! = L£{¢;[aS;}; € tS;
for all ¢, due to R2. Then if t' = L{t;}; we have that ¢t < ¢' and ¢'[aS; = ¢t} € t5; for all ,
and hence ¢’ € || K. O

Theorem 3.3a: (Corollary). For all composable sets K C P,

p(|K)={te(aP)* |VP:Pec K :t[aP c pP}

Proof: Follows from Lemma 3.1 and Theorem 3.3. O

A consequence of the above theorem is that tP is nonempty for all P € P.

4. Comparison with Trace Theory and Directions for Further Research

There are a number of differences between CIT and trace theory [9][10] which should
be pointed out. Whereas CIT is intended to be used to describe and aid in reasoning about
the behavior of a computing agent, trace theory is generally used as a means of specifying
acceptable behavior of a component of a computing system. In trace theory a component
is modeled by a trace structure, which is an alphabet plus a prefix-closed set of finite
traces which specifies the acceptable partial histories of the interaction of a component

11

and its environment. A trace structure is then a specification of both a component and
its environment, whereas a CIT process is a description of the behavior of a computing
agent which makes no assumptions about the environment in which the agent will operate.
Another difference is that trace theory deals with partial histories and thus specifies only
“safeness” or invariance properties, whereas liveness properties may be discussed in the
framework of CIT due to the use of complete traces. As an example, suppose that for some
process P we wish to say that if condition ¢ holds and continues to hold long enough, then
eventually condition % will holds. We can write this as

Vt,s:s<te€tPAP(s):(Is' 18 <6 <t:-g(s') vp(s")

In general, how do we specify properties that we wish a computing agent to have? We

suggest that the only properties of a process P which are really interesting for the purposes
of verification are properties of the form

(Vt:teuP: 3t ¢ <t:y(t))

and
(Vt:tetP: ()

This suggests that perhaps some form of linear-time temporal logic [6] would be useful in
specifying and reasoning about CIT processes.

Another interesting area of research is the application of CIT to the semantics of con-
current programming languages. Work is proceeding on the CIT-theoretic denotational
semantics of concurrent languages. This has required defining an appropriate approxi-
mation ordering on sequential processes to allow recursive definitions. The denotational
semantics will then be used as a foundation from which to develop axiomatic semantics
and proof systems for these languages.

References

1. N. Francez, D. Lehmann and A. Pneuli. A Linear-History Semantics for Languages
for Distributed Programming. Theoretical Computer Science 32 (1984), 25-46.

2. 8. D. Brookes, C. A. R. Hoare and A. W. Roscoe. A Theory of Communicating
Sequential Processes. Journ. ACM 31, no. 3 (July 1984), 560-599.

3. N. Soundararajan. Denotational Semantics of CSP. Theoretical Computer Science 33
(1984), 279-304.

4. A. J. Martin. The Probe: An Addition to Communication Primitives. Information
Processing Letters 20, no. 1 (Jan. 1985), 125-130.

5. R. Milner. Lecture Notes in CS, vol. 92: A Calculus of Communicating Systems,
Springer-Verlag, 1980.

12

10.

. Z. Manna and A. Pneuli. Verification of Concurrent Programs: the Temporal Frame-

work. The Correctness Problem in Computer Science (R. S. Boyer and J. S. Moore
eds.), Academic Press, 1982, 215-273.

2

C. A. R. Hoare. Communicating Sequential Processes. Comm. ACM 21, no. 8 (Aug.
1978), 666-677.

. R. Back. Semantics of Unbounded Nondeterminism. Lecture Notes in CS, vol. 85:

Automata, Languages and Programming. Proceedings, 1980 (J. de Bakker and J. van
Leeuwen, eds.), Springer-Verlag, 1980, 51-63.

J. L. A. van de Snepscheut. Lecture Notes in CS, vol. 200: Trace Theory and VLSI,
Springer-Verlag, 1985.

M. Rem. Concurrent Computations and VLSI Circuits. Control Flow and Data Flow:
Concepts of Distributed Programming (M. Broy, ed.), Springer-Verlag, 1985, 309-437.

13

